ISRAEL JOURNAL OF MATHEMATICS 98 (1996), 259-266

THE BRAUER GROUP OF A CURVE OVER A
STRICTLY LOCAL DISCRETE VALUATION RING

BY

TimoTHY J. FORD

Department of Mathematics, Florida Atlantic University
Boca Raton, FL 33431, USA

e-mail: Ford@acc.fau.edu

In memory of Professor S. A. Amitsur

ABSTRACT
Let K be the field of fractions of a curve over R where R is the
henselization of a regular local ring on an algebraic curve over a field which
is algebraically closed and has characteristic 0. Then K has the exponent
= degree property for division algebras. In fact every central finite di-
mensional K-division algebra with exponent n is a cyclic algebra of degree

n.

In this paper we continue to investigate the structure of division algebras D
finite dimensional over their center K. The motivating problem is to classify
those fields K that have the exponent = degree property for division algebras.
We say that K has the exponent = degree property if for any central K-
division algebra D the exponent of the class [D] in the Brauer group B(K) is
equal to the degree m of the division algebra. Throughout this paper k
is an algebraically closed field of characteristic 0.

Example 1: Some fields that are known to have the exponent = degree property
are listed below.
(1) A global field (an algebraic number field or a function field finitely generated
of transcendence degree 1 over a finite field). This is classical.
(2) The quotient field of either (a) the henselization O;’}, x or (b) the completion

O,,x at a closed point p on a normal surface X over k [1] or [6].
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(3) The quotient field of a ring obtained by (a) henselizing or (b) completing
an affine surface over k along an integral curve [4].

In fact in each of these three examples, each division algebra D is split by a cyclic

extension K (al/™) for some a € K and n = exponent (D).

The purpose of this paper is to add to the list of Example 1 another class of
fields satisfying the exponent = degree property.

Let O, x be the local ring at a regular point p on an algebraic curve X over the
field k. Then O, x is a local principal ideal domain, hence a discrete valuation
ring. The residue field of O, x is k. Let K= O;" x be the henselization of O, x.
Consider an affine algebraic curve C over R. Following [9], C is an affine scheme
together with a structure morphism m: C — Spec R such that 7 is flat and of
finite type, the fibers of 7 are algebraic curves, and C is connected. Then 7
has 2 fibers. The closed fiber w: Cy — xg over the closed point zo of Spec R
is an algebraic curve over k. The open fiber m: C, — n over the open point
of Spec R is an algebraic curve over the quotient field of R. Assume that C, is
integral, with K = K(C,) the field of fractions. Our main result is that K has
the exponent = degree property for division algebras.

THEOREM 2: Let R, C and K be as above and let D be a central finite
dimensional K -division algebra with exponent(D) = n. Then D is a cyclic alge-

bra of degree n.

Proof: The proof is in the flavor of those used by [6] and [4].

Since C is Spec S for an algebra S of finite type over R, we can assume C is a
closed subscheme of affine space A over R. Without changing K we can replace
C with a projective completion over R. If necessary, we can also desingularize
C. Therefore assume that m: C' — Spec R is proper, that the open fiber is
a nonsingular integral curve C, over the quotient field of R. By Embedded
Resolution of Curves in Surfaces [8, p. 391], we can assume that the closed fiber
(Co)req is a divisor over k with normal crossings. That is, write the reduced
closed fiber (Cg)req as a union Cy U Cy U --- U C; of irreducible curves. By the
normal crossing hypothesis we assume each component C; is a nonsingular curve
and that (Cp)req has at most ordinary double points as singularities.

Let L/K be a finite extension of fields and ¥ — C the integral closure of C
in L. Let f: Y/ — Y be any desingularization of Y. That is, Y’ is nonsingular
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and f is a proper birational morphism. There is a complex

0 — B(Y') — B(L) 2~ P H'(K(4),Q/Z)
A

1
W e P u(-1) 2 HA Y, 5) —> 0
P

which is exact except possibly at the term @ H'(K(A),Q/Z). The first summa-
tion is over all irreducible curves A C Y”, the second over all closed points P € Y.
This follows by combining sequences (3.1) and (3.2) of [2]. If H3(Y',u) =0, (1)
is exact. The first two groups in (1) are the Brauer groups respectively, of Y’
and L. The map a “measures the ramification” of a division algebra A over L.
The ramification divisor of A is the set of divisors A where a[A] is nontrivial.
The group H!(K(A),Q/Z) classifies the cyclic Galois extensions of K(A), the
function field of A. The map r measures the ramification of cyclic extensions of
K(A). Here pu(—1) = J,, Hom(pn, Q/Z). Let D be a central K-division algebra
and Dy = D® L, the restriction of D to L. We say that L splits the ramification
of D on C if there exists a desingularization f: Y/ — Y such that the class of
Dy, in the Brauer group B(L) is in the image of the Brauer group B(Y”’) of Y'.

We proceed as in the proof of [4, Cor. 5]. Since R is a direct limit of étale
neighborhoods of (X,p), C is of finite type over R and D is a finite K-algebra,
we can find an étale neighborhood (U, p) of (X, p), and a nonsingular algebraic
surface C satisfying the following:

(1 ) There is a proper morphism C; — U.

(2 ) C=C1 xy SpecR.

(3 ) If K is the function field of Cy, then there is a central simple algebra D,

over K; such that D = D, Q, K.

It was shown in the text immediately preceding Theorem 1.6 of [6] and again
in [4, Prop. 3] that there exists a surface Cz and a proper birational morphism
Cy — Cy and a cyclic field extension L;/K; of degree n such that L splits the
ramification of D; on Cj. Furthermore, if Y; is the integral closure of Cy in L,
then Y; has only rational singularities. Let L denote the field K L;. Then L/K
is cyclic of degree n. Set C' = Cy xy Spec R. Let Y denote the integral closure
of C" in L. By the construction of Cz, Y has at most rational singularities and
D ® L is unramified at each prime divisor on Y. There is a desingularization
Y' — Y and D ® L is unramified on Y’. That is, D @ L represents a class in
the image of the Brauer group of Y’. It therefore suffices to show that Y’ has
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trivial Brauer group. But Y’ — R satisfies the hypothesis of Theorem 3 (which
is stated and proved below), so D® L is split. It follows that D is a cyclic algebra
of degree n. 1

THEOREM 3: Let R, C and K be as in Theorem 2. Assume moreover that
m: C — Spec R is proper, C is regular, that the fibers of m are one dimensional,

and that the closed fiber of & is a curve over k with normal crossings. Then
HY(C,p) =0 for all ¢ > 3 and HY(C,Gy,) =0 for all ¢ > 2.

Proof: Fix an integer n > 2. By proper base change HY(C, ) 2 H¥(Co, tin)
for all ¢ > 1, where Cj is the closed fiber of 7 (i.e. Cy = C x g xp where xq is the
closed point of Spec R). Since Cp is a curve over zy = Speck, H4(Co, pn) = 0
for ¢ > 3. Taking the direct limit over all n gives H4(Cyp, 1) = 0 for ¢ > 3. The
sequence of sheaves for the étale topology on C

x_>xTL

(2)

is exact by Kummer theory. The associated long exact sequence
(3) oo — HY(C, pn) — HI(C, Gy ) = HI(C,Gpy) —> -

shows that multiplication by n is an isomorphism on H¢(C,G,,) for ¢ > 3.
Since C is regular, by [7, I, p. 71] H4(C,G,,) is a torsion group for all ¢ > 2.
Therefore H(C,G,,) = 0 for all ¢ > 3. Now we check that the Brauer group of
C, B(C) = H*(C,Gy,), is trivial. We use the Kummer sequence (3) for ¢ = 2

PicC

) 0— nPicC

— H*(C, ) — ,B(C)—=0

together with the fact that H2(C, un) & H%(Co, itn). We assume Cy is reduced,
since H%(Cy, ttn) & H2((Co)red, ptn). Write Co = C;UC3U---UC, as a union of
nonsingular irreducible curves. We assume each component C; is a nonsingular
curve by the normal crossing hypothesis. By the Kummer sequence (4), the
known description of PicC; and the fact that B(C;) = 0 (see for example |10,
pp. 175-176)), it follows that H2(C;, un) = Z/n is generated by the class of any
prime divisor on Cj. Now H%(Co, pn) & [[5_; H*(Cj, ptn) by Lemma 4 below.
It suffices to show that for each j =1,..., s, there exists a divisor D; on C such
that D; N C; is a prime divisor on C; and DN C; = B if i # j. Let Py be a
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prime divisor on C; not in the singular locus of Cy and pick any prime divisor
D; on C such that the intersection multiplicity of D; and C; at the closed point
Py is 1. This is possible since C' and C; are both regular at Py. The problem
that one must worry about is the possibility that D; intersects Cgy at some other
point. We check that this cannot happen since D; is integral and R is henselian.
Now ¢: D; — C is a closed immersion, hence is proper. Furthermore D; does
not contain any component C; of Cyp. Also D; is closed, so D; does not contain
C,. Consider the composite f = 7 o: D; — Spec R. Since the fibers of 7 are
of dimension 1, f~!(z) is finite for each  in Spec R. So f is quasi-finite. Since
f is a composite of proper morphisms, f is proper. But a proper quasi-finite
morphism is finite [10, p. 6] so D; is finite over R. Since R is henselian, any
connected component of D; x g o gives rise to a connected component of D;.
But Dj is integral, hence D; xr 2o = Po. So ,B(C) = 0 for each n > 1. ]

LEMMA 4: Let C be an algebraic curve over k embedded with normal crossings on
a surface S. If the irreducible components of C are Cy, ..., Cs, then H?(C, pu,) =

H?:l H2(C,', l”n)-

Proof: Let D =C;]]:--]] Cs denote the disjoint union of the curves Cy, ..., Cs.
There is an obvious finite projection m: D —» C. Let oC denote the singular
locus of C and ¢ D = n~!(¢C) those points on D lying over ¢C. Since C has only
nodal singularities, the map 7: 6D —» ¢C' is 2-to-1. Let P be an element of oC
and consider the cohomology with supports in P, H3(C, p,,). The strictly local
ring (’)g, p is henselian with algebraically closed residue field k. Let U denote
Spec O% p and let P" denote the closed point of U. By excision {10, Cor. 1.28,
p. 93] H3(C, pn) = H2, (U, 1n). The long exact sequence for P C U is

vo— HY(U, pn) — HYU = P*, ) — Hn (U, i)

(5) —>H2(U, ﬂn) e en

The curve U consists of 2 nonsingular henselian curves Uy, U crossing at the
closed point P*. Each curve U; is the prime spectrum of a henselian discrete
valuation ring with residue field k. So H*(U, 1) = 0 for 4 > 0 and

HYU - P u,) = HY(Uy -~ P", ) ® HY(Uy — P*, ) 2 Z/n @ Z /1.

So equation (5) and excision show that H3(C, u,) & (Z/ n)(z). If Q is an element
of oD, then the argument above also shows that H3(D,p,) & Z/n. Since
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oC decomposes into a finite number of points P, it follows that HZ,(C, u,)
decomposes into the direct sum [[pc o H3(C, p1n) and similarly for oD. The
long exact sequences of cohomology with supports in ¢C and ¢ D combined with
the maps induced by 7 yield the commutative diagram below.

(6)
HYC - 0C, pn) — H2-(C, pn) — HY(C, ) —— H2(C — 0C, i)

la I I I

Hl(D_aDall'n) - Hgl)(Dyun) —_— H2(D7ﬂn) — Hz(D —UDvun)

Because m: C — 0C —» D — oD, o and § are isomorphisms. The map 3 is
an isomorphism by the above computations. Therefore v is an isomorphism.
Because D is a disjoint union, the lemma, follows. |

COROLLARY 5: Let R, C and K be as in Theorem 3. The sequence
0 —=B(K) - (D H'(K(A),Q/Z) > P u(-1) —0
A P

is exact where the first summation is over all irreducible curves A C C, the
second over all closed points P € C.

Proof: Follows immediately from (1) and Theorem 3. |

For any discrete valuation ring R with perfect residue field k£ and field of
fractions K, for each ¢ > 0 the natural map HY(R,G,,) — H(k,G,,) is an
isomorphism [7, III, p. 93]. For ¢ = 2 this is the theorem of Azumaya. There is
a split-exact sequence

0 — HYk,Gn) — HYK,Gp) — H" Yk,G) — 0

for each ¢ > 2 [7, III, p. 93 and p. 188]. In particular, for ¢ = 2, it follows that
the Brauer group of K decomposes into a direct sum of B(k) and H!(k,Q/Z).
The group H(k,Q/Z) parametrizes the unramified cyclic Galois extensions of
K. Various other results along these same lines are derived in [3] and [11]. We
arrive at similar results for the Brauer group of a curve over K.

THEOREM 6: Let R be a strictly local ring which is the henselization of a local
ring Op, x at a closed point p on a smooth curve X over k. Let m: C — Spec R be
proper and smooth of relative dimension 1. Let n be the generic point of Spec R



Vol. 96, 1996 CURVE OVER A STRICTLY LOCAL DVR 265

and C,, = C xp1n. Let xo be the closed point of Spec R and Cy = C X g xo.
Then the Brauer group B(C,) is isomorphic to H'(Co,Q/Z). Every Azumaya
algebra over C,, of exponent n is split by a cyclic Galois extension of degree n
which descends to an unramified extension of C.

Proof: Since Spec R = {xo} U {n} with {zq} closed and {n} open, we have
C = ChuC, with Cq closed and C;, open. The long exact sequence of cohomology
with supports in Cy and coefficients in G,, is

H(C,Gm) — H(Cy, Gp) — HE (C,Gp) —
(7) HYC,Gn) — HYC,, Gp) — HZ (C,Gp) —

H*(C,Gn) — H*(Cy, Gy) — HE (C,Gp) — -+
If ¢ is a local parameter for R, then

HY(C,\G)
(.G,

and t vanishes with order 1 along Cp. Since Cy is a principal divisor, Pic C' &

Pic C,,. From Kummer theory the diagram

0 — H°(C,,Gn) ®Z/n — HY(Cy, pn) — o PicC)) —— 0

(®) [ [ e

0 —— HY%C,G,,) ® Z/n ——— HY(C, i)

nPicC ——0

commutes and has exact rows. Since H°(C,,G,) ® Z/n = (t)/{t") and
H%(C,G,,) ® Z/n = 0, we see from (8) that H1(C,, u,) & (8)/{t") x HY(C, p,)
and by proper base change H(C, u,,) & H'(Co, it). From Theorem 3 we have
HYC,Gy,) = 0 for all ¢ > 2. From (7) it follows that HY(C,,G,,) =
H g:l(C, G, ) for all ¢ > 2. Since Spec R is a direct limit of étale neighborhoods
U — X of the closed point p — X, the morphism #: C —+ Spec R descends to
a proper smooth morphism C’ — U with a closed fiber C§ = C' xy p = C,.
By cohomological purity (see [11]) Ha,)(C’,Gm) =~ H172(Cy,Q/Z) for all ¢ > 3.
Taking the limit over all such U — X yields HE (C, Gy ) & H97%(Co, Q/Z) for all
q > 3. Therefore H*(C,, Grm) & HY(Co,Q/Z), H3(C,),G) =& H?(Co, Q/Z) =
p and HYC,, G, ) & H"YCy,Q/Z) = O for all ¢ > 4. The isomorphism
2H*(Cy,Gy,) = HY(Co,Z/n) is the Gysin map [10, p. 244]. Given any X in
H(C,Z/n) there is a corresponding Ao in H'(Co,Z/n). Let A, denote the im-
age of A in the group H'(C,,Z/n) under the natural map. Let ), also denote
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the corresponding cyclic Galois cover of C, with group (¢). Using the cyclic
Galois cover A, and the trivial factor set ¢ we form a cyclic crossed product
algebra A(A) = (X,/Cy,0,t) which represents a class in ,B(C,). Consider the
ramification divisor of A(A) on C. Along the divisor Cy of C, the ramification of
A()) is the element g of the group H'(Cy, Z/n). Therefore, the correspondence
A — A(X) induces an isomorphism HY(C,Z/n) = ,B(C,). Every Azumaya
algebra over C, whose Brauer class is annihilated by n is Brauer equivalent to a
cyclic crossed product of the form (A, /C, o, t), hence is split by A, for some A.
B
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