THE BRAUER GROUP OF A CURVE OVER A STRICTLY LOCAL DISCRETE VALUATION RING

ΒY

TIMOTHY J. FORD

Department of Mathematics, Florida Atlantic University Boca Raton, FL 33431, USA e-mail: Ford@acc.fau.edu

In memory of Professor S. A. Amitsur

ABSTRACT

Let K be the field of fractions of a curve over R where R is the henselization of a regular local ring on an algebraic curve over a field which is algebraically closed and has characteristic 0. Then K has the exponent = degree property for division algebras. In fact every central finite dimensional K-division algebra with exponent n is a cyclic algebra of degree n.

In this paper we continue to investigate the structure of division algebras D finite dimensional over their center K. The motivating problem is to classify those fields K that have the **exponent = degree** property for division algebras. We say that K has the **exponent = degree** property if for any central K-division algebra D the exponent of the class [D] in the Brauer group B(K) is equal to the degree $\sqrt{(D:K)}$ of the division algebra. Throughout this paper k is an algebraically closed field of characteristic 0.

Example 1: Some fields that are known to have the exponent = degree property are listed below.

- (1) A global field (an algebraic number field or a function field finitely generated of transcendence degree 1 over a finite field). This is classical.
- (2) The quotient field of either (a) the henselization $\mathcal{O}_{p,X}^h$ or (b) the completion $\hat{\mathcal{O}}_{p,X}$ at a closed point p on a normal surface X over k [1] or [6].

Received March 26, 1995

(3) The quotient field of a ring obtained by (a) henselizing or (b) completing an affine surface over k along an integral curve [4].

In fact in each of these three examples, each division algebra D is split by a cyclic extension $K(\alpha^{1/n})$ for some $\alpha \in K$ and n = exponent(D).

The purpose of this paper is to add to the list of Example 1 another class of fields satisfying the exponent = degree property.

Let $\mathcal{O}_{p,X}$ be the local ring at a regular point p on an algebraic curve X over the field k. Then $\mathcal{O}_{p,X}$ is a local principal ideal domain, hence a discrete valuation ring. The residue field of $\mathcal{O}_{p,X}$ is k. Let $R = \mathcal{O}_{p,X}^h$ be the henselization of $\mathcal{O}_{p,X}$. Consider an affine algebraic curve C over R. Following [9], C is an affine scheme together with a structure morphism $\pi: C \longrightarrow \operatorname{Spec} R$ such that π is flat and of finite type, the fibers of π are algebraic curves, and C is connected. Then π has 2 fibers. The closed fiber $\pi: C_0 \longrightarrow x_0$ over the closed point x_0 of Spec R is an algebraic curve over k. The open fiber $\pi: C_\eta \longrightarrow \eta$ over the open point of Spec R is an algebraic curve over the quotient field of R. Assume that C_η is integral, with $K = K(C_\eta)$ the field of fractions. Our main result is that K has the exponent = degree property for division algebras.

THEOREM 2: Let R, C and K be as above and let D be a central finite dimensional K-division algebra with exponent(D) = n. Then D is a cyclic algebra of degree n.

Proof: The proof is in the flavor of those used by [6] and [4].

Since C is Spec S for an algebra S of finite type over R, we can assume C is a closed subscheme of affine space \mathbb{A}_R^m over R. Without changing K we can replace C with a projective completion over R. If necessary, we can also desingularize C. Therefore assume that $\pi: C \longrightarrow$ Spec R is proper, that the open fiber is a nonsingular integral curve C_{η} over the quotient field of R. By Embedded Resolution of Curves in Surfaces [8, p. 391], we can assume that the closed fiber $(C_0)_{red}$ is a divisor over k with normal crossings. That is, write the reduced closed fiber $(C_0)_{red}$ as a union $C_1 \cup C_2 \cup \cdots \cup C_s$ of irreducible curves. By the normal crossing hypothesis we assume each component C_j is a nonsingular curve and that $(C_0)_{red}$ has at most ordinary double points as singularities.

Let L/K be a finite extension of fields and $Y \longrightarrow C$ the integral closure of C in L. Let $f: Y' \longrightarrow Y$ be any desingularization of Y. That is, Y' is nonsingular

and f is a proper birational morphism. There is a complex

(1)

$$0 \longrightarrow \mathcal{B}(Y') \longrightarrow \mathcal{B}(L) \xrightarrow{a} \bigoplus_{\Delta} H^{1}(K(\Delta), \mathbb{Q}/\mathbb{Z})$$

$$\xrightarrow{r} \bigoplus_{P} \mu(-1) \xrightarrow{s} H^{4}(Y', \mu) \longrightarrow 0$$

which is exact except possibly at the term $\bigoplus H^1(K(\Delta), \mathbb{Q}/\mathbb{Z})$. The first summation is over all irreducible curves $\Delta \subseteq Y'$, the second over all closed points $P \in Y'$. This follows by combining sequences (3.1) and (3.2) of [2]. If $H^3(Y', \mu) = 0$, (1) is exact. The first two groups in (1) are the Brauer groups respectively, of Y'and L. The map a "measures the ramification" of a division algebra Λ over L. The ramification divisor of Λ is the set of divisors Δ where $a[\Lambda]$ is nontrivial. The group $H^1(K(\Delta), \mathbb{Q}/\mathbb{Z})$ classifies the cyclic Galois extensions of $K(\Delta)$, the function field of Δ . The map r measures the ramification of cyclic extensions of $K(\Delta)$. Here $\mu(-1) = \bigcup_n \operatorname{Hom}(\mu_n, \mathbb{Q}/\mathbb{Z})$. Let D be a central K-division algebra and $D_L = D \otimes L$, the restriction of D to L. We say that L splits the ramification of D on C if there exists a desingularization $f: Y' \longrightarrow Y$ such that the class of D_L in the Brauer group B(L) is in the image of the Brauer group B(Y') of Y'.

We proceed as in the proof of [4, Cor. 5]. Since R is a direct limit of étale neighborhoods of (X, p), C is of finite type over R and D is a finite K-algebra, we can find an étale neighborhood (U, p) of (X, p), and a nonsingular algebraic surface C_1 satisfying the following:

- (1) There is a proper morphism $C_1 \longrightarrow U$.
- (2) $C = C_1 \times_U \operatorname{Spec} R$.
- (3) If K_1 is the function field of C_1 , then there is a central simple algebra D_1 over K_1 such that $D = D_1 \otimes_{K_1} K$.

It was shown in the text immediately preceding Theorem 1.6 of [6] and again in [4, Prop. 3] that there exists a surface C_2 and a proper birational morphism $C_2 \longrightarrow C_1$ and a cyclic field extension L_1/K_1 of degree *n* such that L_1 splits the ramification of D_1 on C_2 . Furthermore, if Y_1 is the integral closure of C_2 in L_1 , then Y_1 has only rational singularities. Let *L* denote the field KL_1 . Then L/Kis cyclic of degree *n*. Set $C' = C_2 \times_U$ Spec *R*. Let *Y* denote the integral closure of *C'* in *L*. By the construction of C_2 , *Y* has at most rational singularities and $D \otimes L$ is unramified at each prime divisor on *Y*. There is a desingularization $Y' \longrightarrow Y$ and $D \otimes L$ is unramified on *Y'*. That is, $D \otimes L$ represents a class in the image of the Brauer group of *Y'*. It therefore suffices to show that *Y'* has trivial Brauer group. But $Y' \longrightarrow R$ satisfies the hypothesis of Theorem 3 (which is stated and proved below), so $D \otimes L$ is split. It follows that D is a cyclic algebra of degree n.

THEOREM 3: Let R, C and K be as in Theorem 2. Assume moreover that $\pi: C \longrightarrow$ Spec R is proper, C is regular, that the fibers of π are one dimensional, and that the closed fiber of π is a curve over k with normal crossings. Then $H^q(C, \mu) = 0$ for all $q \ge 3$ and $H^q(C, \mathbb{G}_m) = 0$ for all $q \ge 2$.

Proof: Fix an integer $n \ge 2$. By proper base change $H^q(C, \mu_n) \cong H^q(C_0, \mu_n)$ for all $q \ge 1$, where C_0 is the closed fiber of π (i.e. $C_0 = C \times_R x_0$ where x_0 is the closed point of Spec R). Since C_0 is a curve over $x_0 = \text{Spec } k$, $H^q(C_0, \mu_n) = 0$ for $q \ge 3$. Taking the direct limit over all n gives $H^q(C_0, \mu) = 0$ for $q \ge 3$. The sequence of sheaves for the étale topology on C

(2)
$$x \longrightarrow x^n$$

 $1 \longrightarrow \mu_n \longrightarrow \mathbb{G}_m \longrightarrow \mathbb{G}_m \longrightarrow 1$

is exact by Kummer theory. The associated long exact sequence

(3)
$$\cdots \longrightarrow H^q(C, \mu_n) \longrightarrow H^q(C, \mathbb{G}_m) \xrightarrow{n} H^q(C, \mathbb{G}_m) \longrightarrow \cdots$$

shows that multiplication by n is an isomorphism on $H^q(C, \mathbb{G}_m)$ for $q \geq 3$. Since C is regular, by [7, II, p. 71] $H^q(C, \mathbb{G}_m)$ is a torsion group for all $q \geq 2$. Therefore $H^q(C, \mathbb{G}_m) = 0$ for all $q \geq 3$. Now we check that the Brauer group of C, $B(C) = H^2(C, \mathbb{G}_m)$, is trivial. We use the Kummer sequence (3) for q = 2

(4)
$$0 \longrightarrow \frac{\operatorname{Pic} C}{n \operatorname{Pic} C} \longrightarrow H^2(C, \mu_n) \longrightarrow {}_n B(C) \longrightarrow 0$$

together with the fact that $H^2(C, \mu_n) \cong H^2(C_0, \mu_n)$. We assume C_0 is reduced, since $H^2(C_0, \mu_n) \cong H^2((C_0)_{\text{red}}, \mu_n)$. Write $C_0 = C_1 \cup C_2 \cup \cdots \cup C_s$ as a union of nonsingular irreducible curves. We assume each component C_j is a nonsingular curve by the normal crossing hypothesis. By the Kummer sequence (4), the known description of Pic C_j and the fact that $B(C_j) = 0$ (see for example [10, pp. 175–176]), it follows that $H^2(C_j, \mu_n) \cong \mathbb{Z}/n$ is generated by the class of any prime divisor on C_j . Now $H^2(C_0, \mu_n) \cong \coprod_{j=1}^s H^2(C_j, \mu_n)$ by Lemma 4 below. It suffices to show that for each $j = 1, \ldots, s$, there exists a divisor D_j on C such that $D_j \cap C_j$ is a prime divisor on C_j and $D \cap C_i = \emptyset$ if $i \neq j$. Let P_0 be a prime divisor on C_j not in the singular locus of C_0 and pick any prime divisor D_j on C such that the intersection multiplicity of D_j and C_j at the closed point P_0 is 1. This is possible since C and C_j are both regular at P_0 . The problem that one must worry about is the possibility that D_j intersects C_0 at some other point. We check that this cannot happen since D_j is integral and R is henselian. Now $\iota: D_j \hookrightarrow C$ is a closed immersion, hence is proper. Furthermore D_j does not contain any component C_i of C_0 . Also D_j is closed, so D_j does not contain C_η . Consider the composite $f = \pi \circ \iota: D_j \longrightarrow$ Spec R. Since the fibers of π are of dimension 1, $f^{-1}(x)$ is finite for each x in Spec R. So f is quasi-finite. Since f is a composite of proper morphisms, f is proper. But a proper quasi-finite morphism is finite [10, p. 6] so D_j is finite over R. Since R is henselian, any connected component of $D_j \times_R x_0$ gives rise to a connected component of D_j .

LEMMA 4: Let C be an algebraic curve over k embedded with normal crossings on a surface S. If the irreducible components of C are C_1, \ldots, C_s , then $H^2(C, \mu_n) \cong \prod_{i=1}^n H^2(C_i, \mu_n)$.

Proof: Let $D = C_1 \coprod \cdots \coprod C_s$ denote the disjoint union of the curves C_1, \ldots, C_s . There is an obvious finite projection $\pi: D \longrightarrow C$. Let σC denote the singular locus of C and $\sigma D = \pi^{-1}(\sigma C)$ those points on D lying over σC . Since C has only nodal singularities, the map $\pi: \sigma D \longrightarrow \sigma C$ is 2-to-1. Let P be an element of σC and consider the cohomology with supports in P, $H^2_P(C, \mu_n)$. The strictly local ring $\mathcal{O}^h_{C,P}$ is henselian with algebraically closed residue field k. Let U denote Spec $\mathcal{O}^h_{C,P}$ and let P^h denote the closed point of U. By excision [10, Cor. 1.28, p. 93] $H^2_P(C, \mu_n) \cong H^2_{Ph}(U, \mu_n)$. The long exact sequence for $P^h \subseteq U$ is

(5)
$$\cdots \longrightarrow H^1(U,\mu_n) \longrightarrow H^1(U-P^h,\mu_n) \longrightarrow H^2_{P^h}(U,\mu_n)$$
$$\longrightarrow H^2(U,\mu_n) \longrightarrow \cdots .$$

The curve U consists of 2 nonsingular henselian curves U_1 , U_2 crossing at the closed point P^h . Each curve U_i is the prime spectrum of a henselian discrete valuation ring with residue field k. So $H^i(U, \mu_n) = 0$ for i > 0 and

$$H^{1}(U - P^{h}, \mu_{n}) = H^{1}(U_{1} - P^{h}, \mu_{n}) \oplus H^{1}(U_{2} - P^{h}, \mu_{n}) \cong \mathbb{Z}/n \oplus \mathbb{Z}/n.$$

So equation (5) and excision show that $H^2_P(C, \mu_n) \cong (\mathbb{Z}/n)^{(2)}$. If Q is an element of σD , then the argument above also shows that $H^2_Q(D, \mu_n) \cong \mathbb{Z}/n$. Since

T. J. FORD

 σC decomposes into a finite number of points P, it follows that $H^2_{\sigma C}(C, \mu_n)$ decomposes into the direct sum $\coprod_{P \in \sigma C} H^2_P(C, \mu_n)$ and similarly for σD . The long exact sequences of cohomology with supports in σC and σD combined with the maps induced by π yield the commutative diagram below.

Because $\pi: C - \sigma C \xrightarrow{\cong} D - \sigma D$, α and δ are isomorphisms. The map β is an isomorphism by the above computations. Therefore γ is an isomorphism. Because D is a disjoint union, the lemma follows.

COROLLARY 5: Let R, C and K be as in Theorem 3. The sequence

$$0 \longrightarrow \mathcal{B}(K) \xrightarrow{a} \bigoplus_{\Delta} H^1(K(\Delta), \mathbb{Q}/\mathbb{Z}) \xrightarrow{r} \bigoplus_{P} \mu(-1) \longrightarrow 0$$

is exact where the first summation is over all irreducible curves $\Delta \subseteq C$, the second over all closed points $P \in C$.

Proof: Follows immediately from (1) and Theorem 3.

For any discrete valuation ring R with perfect residue field k and field of fractions K, for each $q \ge 0$ the natural map $H^q(R, \mathbb{G}_m) \longrightarrow H^q(k, \mathbb{G}_m)$ is an isomorphism [7, III, p. 93]. For q = 2 this is the theorem of Azumaya. There is a split-exact sequence

$$0 \longrightarrow H^{q}(k, \mathbb{G}_{m}) \longrightarrow H^{q}(K, \mathbb{G}_{m}) \longrightarrow H^{q-1}(k, \mathbb{G}_{m}) \longrightarrow 0$$

for each $q \ge 2$ [7, III, p. 93 and p. 188]. In particular, for q = 2, it follows that the Brauer group of K decomposes into a direct sum of B(k) and $H^1(k, \mathbb{Q}/\mathbb{Z})$. The group $H^1(k, \mathbb{Q}/\mathbb{Z})$ parametrizes the unramified cyclic Galois extensions of K. Various other results along these same lines are derived in [3] and [11]. We arrive at similar results for the Brauer group of a curve over K.

THEOREM 6: Let R be a strictly local ring which is the henselization of a local ring $\mathcal{O}_{p,X}$ at a closed point p on a smooth curve X over k. Let $\pi: C \longrightarrow \operatorname{Spec} R$ be proper and smooth of relative dimension 1. Let η be the generic point of $\operatorname{Spec} R$

and $C_{\eta} = C \times_R \eta$. Let x_0 be the closed point of Spec R and $C_0 = C \times_R x_0$. Then the Brauer group $B(C_{\eta})$ is isomorphic to $H^1(C_0, \mathbb{Q}/\mathbb{Z})$. Every Azumaya algebra over C_{η} of exponent n is split by a cyclic Galois extension of degree n which descends to an unramified extension of C.

Proof: Since Spec $R = \{x_0\} \cup \{\eta\}$ with $\{x_0\}$ closed and $\{\eta\}$ open, we have $C = C_0 \cup C_\eta$ with C_0 closed and C_η open. The long exact sequence of cohomology with supports in C_0 and coefficients in \mathbb{G}_m is

(7)
$$H^{0}(C, \mathbb{G}_{m}) \longrightarrow H^{0}(C_{\eta}, \mathbb{G}_{m}) \longrightarrow H^{1}_{C_{0}}(C, \mathbb{G}_{m}) \longrightarrow$$
$$H^{1}(C, \mathbb{G}_{m}) \longrightarrow H^{1}(C_{\eta}, \mathbb{G}_{m}) \longrightarrow H^{2}_{C_{0}}(C, \mathbb{G}_{m}) \longrightarrow$$
$$H^{2}(C, \mathbb{G}_{m}) \longrightarrow H^{2}(C_{\eta}, \mathbb{G}_{m}) \longrightarrow H^{3}_{C_{0}}(C, \mathbb{G}_{m}) \longrightarrow \cdots$$

If t is a local parameter for R, then

$$rac{H^0(C_\eta, \mathbb{G}_m)}{H^0(C, \mathbb{G}_m)} = \langle t
angle$$

and t vanishes with order 1 along C_0 . Since C_0 is a principal divisor, $\operatorname{Pic} C \cong \operatorname{Pic} C_{\eta}$. From Kummer theory the diagram

commutes and has exact rows. Since $H^0(C_\eta, \mathbb{G}_m) \otimes \mathbb{Z}/n \cong \langle t \rangle / \langle t^n \rangle$ and $H^0(C, \mathbb{G}_m) \otimes \mathbb{Z}/n = 0$, we see from (8) that $H^1(C_\eta, \mu_n) \cong \langle t \rangle / \langle t^n \rangle \times H^1(C, \mu_n)$ and by proper base change $H^1(C, \mu_n) \cong H^1(C_0, \mu_n)$. From Theorem 3 we have $H^q(C, \mathbb{G}_m) = 0$ for all $q \geq 2$. From (7) it follows that $H^q(C_\eta, \mathbb{G}_m) \cong H^{q+1}_{C_0}(C, \mathbb{G}_m)$ for all $q \geq 2$. Since Spec R is a direct limit of étale neighborhoods $U \hookrightarrow X$ of the closed point $p \hookrightarrow X$, the morphism $\pi: C \longrightarrow$ Spec R descends to a proper smooth morphism $C' \longrightarrow U$ with a closed fiber $C'_0 = C' \times_U p \cong C_0$. By cohomological purity (see [11]) $H^q_{C'_0}(C', \mathbb{G}_m) \cong H^{q-2}(C_0, \mathbb{Q}/\mathbb{Z})$ for all $q \geq 3$. Taking the limit over all such $U \hookrightarrow X$ yields $H^q_{C_0}(C, \mathbb{G}_m) \cong H^{q-2}(C_0, \mathbb{Q}/\mathbb{Z})$ for all $q \geq 3$. Therefore $H^2(C_\eta, \mathbb{G}_m) \cong H^{1}(C_0, \mathbb{Q}/\mathbb{Z})$, $H^3(C_\eta, \mathbb{G}_m) \cong H^2(C_0, \mathbb{Q}/\mathbb{Z}) \cong \mu$ and $H^q(C_\eta, \mathbb{G}_m) \cong H^{q-1}(C_0, \mathbb{Q}/\mathbb{Z}) = 0$ for all $q \geq 4$. The isomorphism $nH^2(C_\eta, \mathbb{G}_m) \cong H^{q-1}(C_0, \mathbb{Q}/\mathbb{Z})$ is the Gysin map [10, p. 244]. Given any λ in $H^1(C, \mathbb{Z}/n)$ there is a corresponding λ_0 in $H^1(C_0, \mathbb{Z}/n)$. Let λ_η also denote T. J. FORD

the corresponding cyclic Galois cover of C_{η} with group $\langle \sigma \rangle$. Using the cyclic Galois cover λ_{η} and the trivial factor set t we form a cyclic crossed product algebra $\Delta(\lambda) = (\lambda_{\eta}/C_{\eta}, \sigma, t)$ which represents a class in ${}_{n}\mathbf{B}(C_{\eta})$. Consider the ramification divisor of $\Delta(\lambda)$ on C. Along the divisor C_{0} of C, the ramification of $\Delta(\lambda)$ is the element λ_{0} of the group $H^{1}(C_{0}, \mathbb{Z}/n)$. Therefore, the correspondence $\lambda \mapsto \Delta(\lambda)$ induces an isomorphism $H^{1}(C, \mathbb{Z}/n) \cong {}_{n}\mathbf{B}(C_{\eta})$. Every Azumaya algebra over C_{η} whose Brauer class is annihilated by n is Brauer equivalent to a cyclic crossed product of the form $(\lambda_{\eta}/C_{\eta}, \sigma, t)$, hence is split by λ_{η} for some λ .

References

- M. Artin, Two dimensional orders of finite representation type, Manuscripta Mathematica 58 (1987), 445-471.
- [2] M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proceedings of the London Mathematical Society 25 (1972), 75-95.
- [3] M. Auslander and A. Brumer, Brauer groups of discrete valuation rings, Nederl. Akad. Wetensch. Proc. Ser. A 71 (1968), 286–296.
- [4] T. J. Ford, Division algebras over nonlocal henselian surfaces, Pacific Journal of Mathematics 147 (1991), 301-310.
- [5] T. J. Ford, On the Brauer group of a localization, Journal of Algebra 147 (1992), 365–378.
- [6] T. J. Ford and D. Saltman, Division algebras over henselian surfaces, Israel Mathematical Conference Proceedings 1 (1989), 320–336.
- [7] A. Grothendieck, Le groupe de Brauer I, II, III, in Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968, pp. 46–188.
- [8] R. Hartshorne, Algebraic Geometry, Vol. 52 of Graduate Texts in Mathematics, Springer-Verlag, New York/Berlin, 1977.
- [9] S. Lichtenbaum, Curves over discrete valuation rings, American Journal of Mathematics 90 (1968), 380-405.
- [10] J. Milne, Etale Cohomology, Vol. 33 of Princeton Mathematical Series, Princeton University Press, Princeton, N.J., 1980.
- S. Yuan, On the Brauer groups of local fields, Annals of Mathematics 82 (1965), 434-444.