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ABSTRACT 

Let K be the field of fractions of a curve over R where R is the 

henselization of a regular local ring on an algebraic curve over a field which 

is algebraically closed and has characteristic 0. Then K has the exponent  

= degree proper ty  for division algebras. In fact every central finite di~ 

mensional K-division algebra with exponent n is a cyclic algebra of degree 

In this paper we continue to investigate the structure of division algebras D 

finite dimensional over their center K. The motivating problem is to classify 

those fields K that  have the e x p o n e n t  = d e g r e e  property for division algebras. 

We say that  K has the e x p o n e n t  = d e g r e e  property if for any central K- 

division algebra D the exponent of the class [D] in the Brauer group B(K) is 

equal to the degree ~ K) of the division algebra. Throughout this paper k 

is an algebraically closed field of characteristic 0. 

Example  1: Some fields that are known to have the exponent = degree property 

are listed below. 

(1) A global field (an algebraic number field or a function field finitely generated 

of transcendence degree 1 over a finite field). This is classical. 

(2) The quotient field of either (a) the henselization (9hx or (b) the completion 

Op,x at a closed point p on a normal surface X over k [1] or [6]. 
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(3) The quotient field of a ring obtained by (a) henselizing or (b) complet ing 

an affine surface over k along an integral curve [4]. 

In fact in each of these three examples, each division algebra D is split by a cyclic 

extension K(a  1/n) for some a E K and n = exponent(D) .  

The purpose of this paper  is to add to the list of Example  1 another  class of 

fields satisfying the exponent  = degree property. 

Let Op,x be the local ring at a regular point p on an algebraic curve X over the 

field k. Then  Op,x is a local principal ideal domain,  hence a discrete valuation 
h ring. The  residue field of Op,x is k. Let R = Op, x be the henselization of  Op,x. 

Consider an affine algebraic curve C over R. Following [9], C is an affine scheme 

together  with a s t ructure morphism 7r: C . Spec R such tha t  7r is flat and of 

finite type,  the fibers of ~r are algebraic curves, and C is connected. Then  ~r 

has 2 fibers. The closed fiber ~r: Co . x0 over the closed point  x0 of Spec R 

is an algebraic curve over k. The open fiber ~r: C ,  , ~ over the open point  

of Spec R is an algebraic curve over the quotient field of R. Assume tha t  C, 7 is 

integral, with K = K(C~) the field of fractions. Our main result is tha t  K has 

the exponent  = degree proper ty  for division algebras. 

THEOREM 2: Let R, C and K be as above and let D be a central finite 

dimensional K-division algebra with exponent(D)  = n. Then D is a cyclic alge- 

bra of  degree n. 

Proo£" The proof  is in the flavor of those used by [6] and [4]. 

Since C is Spec S for an algebra S of finite type over R, we can assume C is a 

closed subscheme of affine space A~ over R. Wi thou t  changing K we can replace 

C with a projective completion over R, If  necessary, we can also desingularize 

C. Therefore assume tha t  ~r: C * Spec R is proper, tha t  the open fiber is 

a nonsingular integral curve Cn over the quotient field of R. By Embedded  

Resolution of Curves in Surfaces [8, p. 391], we can assume tha t  the closed fiber 

(Co)~ed is a divisor over k with normal crossings. Tha t  is, write the reduced 

closed fiber (Co)~¢d as a union C1 U C2 U --.  u C,  of irreducible curves. By the 

normal  crossing hypothesis  we assume each component, Cj is a nonsingular curve 

and tha t  (Co)r¢d has at most  ordinary double points as singularities. 

Let L / K  be a finite extension of fields and Y , C the integral closure of C 

in L. Let f :  Y~ , Y be ally desingularization of Y. Tha t  is, Y~ is nonsingular  
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and f is a proper birational morphism. There is a complex 

0 , B(Y') , B(L) a ~HI (K(A) ,Q /Z )  
A 

(1) ~. ~ # ( - 1 )  ~, H 4 ( y ' , # )  • 0 

P 

which is exact except possibly at the term ~ H I ( K ( A ) ,  Q/Z).  The first summa- 

tion is over all irreducible curves A C_ YP, the second over all closed points P C Y'. 

This follows by combining sequences (3.1) and (3.2) of [2]. If Ha(y ', #) = 0, (1) 

is exact. The first two groups in (1) are the Brauer groups respectively, of Yt 

and L. The map a "measures the ramification" of a division algebra A over L. 

The ramification divisor of A is the set of divisors A where a[A] is nontrivial. 

The group H I ( K ( A ) ,  Q/Z) classifies the cyclic Galois extensions of K(A) ,  the 

function field of A. The map r measures the ramification of cyclic extensions of 

K(A) .  Here p ( - 1 )  = [Jn Hom(#n, Q/Z).  Let D be a central K-division algebra 

and DL = D ® L, the restriction of D to L. We say that L splits the ramification 

of D on C if there exists a desingularization f :  Y~ * Y such that  the class of 

DL in the Brauer group B(L) is in the image of the Brauer group B(Y ~) of Y'. 

We proceed as in the proof of [4, Cor. 5]. Since R is a direct limit of ~tale 

neighborhoods of (X, p), C is of finite type over R and D is a finite K-algebra, 

we can find an ~tale neighborhood (U,p) of (X,p),  and a nonsingular algebraic 

surface C1 satisfying the following: 

( 1 )  There is a proper morphism C1 * U. 

( 2 ) C = C 1  × u S p e c R .  

( 3 )  If K1 is the function field of C1, then there is a central simple algebra D1 

over K1 such that  D = D1 ®K1 K. 

It was shown in the text immediately preceding Theorem 1.6 of [6] and again 

in [4, Prop. 3] that  there exists a surface C2 and a proper birational morphism 

C2 - C1 and a cyclic field extension L1/K1 of degree n such that  L1 splits the 

ramification of D1 on C2. Furthermore, if Y1 is the integral closure of C2 in L1, 

then Y1 has only rational singularities. Let L denote the field KL1. Then L/K 
is cyclic of degree n. Set C r = C2 × u Spec R. Let Y denote the integral closure 

of C'  in L. By the construction of C2, Y has at most rational singularities and 

D ® L is unramified at each prime divisor on Y. There is a desingularization 

Y' • Y and D ® L is unramified on Y~. That  is, D ® L represents a class in 

the image of the Brauer group of Y~. It therefore suffices to show that  Y~ has 
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trivial Brauer group. But Y' , R satisfies the hypothesis of Theorem 3 (which 

is stated and proved below), so D ® L  is split. It follows that D is a cyclic algebra 

of degree n. | 

THEOREM 3: Let R, C and K be as in Theorem 2. Assume moreover that 

7r: C , Spec R is proper, C is regular, that the fibers of Tr are one dimensional, 

and that the dosed fiber of ~r is a curve over k with normal crossings. Then 

Hq(c,  #) = 0 for all q >_ 3 and Hq(c,  Gin) = 0 for ali q >_ 2. 

Proo~ Fix an integer n _> 2. By proper base change Hq(c,  #n) ~- Hq(Co, #,~) 

for all q _> 1, where Co is the closed fiber of 7r (i.e. Co = C xRx0 where Xo is the 

closed point of Spec R). Since Co is a curve over x0 = Spec k, Ha(Co, #n) = 0 

for q _> 3. Taking the direct limit over all n gives Hq(Co,#) = 0 for q >__ 3. The 

sequence of sheaves for the 6tale topology on C 

X D X n 

(2) 
1 " # n  ' G~ " Gm , 1  

is exact by Kummer theory. The associated long exact sequence 

(3) . . . .  Hq(c ,#~)  , Hq(C, Gm) n Hq(C, Gm) , . . .  

shows that  multiplication by n is an isomorphism on Hq(C, Gin) for q >_ 3. 

Since C is regular, by [7, II, p. 71] Hq(C, Gm) is a torsion group for all q >_ 2. 

Therefore Hq(C, G m ) =  0 for all q >_ 3. Now we check that the Brauer group of 

C, B(C) = H2(C,G,~),  is trivial. We use the Kummer sequence (3) for q = 2 

Pic C 
(4) 0 n P i c C  H2(C'ttn) ,B (C)  0 

together with the fact that  H2(C, #,~) -~ H2(C0, #n). We assume Co is reduced, 

since H2(C0, ttn) ~ H2((C0)red, #~). Write Co = C1 U C2 U . . .  U Cs as a union of 

nonsingular irreducible curves. We assume each component Cj is a nonsingular 

curve by the normal crossing hypothesis. By the Kummer sequence (4), the 

known description of PicCj  and the fact that B(Cj) = 0 (see for example [10, 

pp. 175-176]), it follows that H2(Cj, ttn) ~- Z / n  is generated by the class of any 

prime divisor on Cj. Now H2(Co,ttn) ~- I_I~=1H2(Cj,#n) by Lemma 4 below. 

It suffices to show that for each j = 1 , . . . ,  s, there exists a divisor Dj on C such 

that  D j N C j  is a prime divisor on Cj and D N C i  = 0 i f i  # j .  Let Po be a 
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prime divisor on Cj not in the singular locus of Co and pick any prime divisor 

Dj on C such that  the intersection multiplicity of Dj and Cj at the closed point 

P0 is 1. This is possible since C and Cj are both regular at Po. The problem 

that  one must worry about is the possibility that  Dj intersects Co at some other 

point. We check that this cannot happen since Dj is integral and R is henselian. 

Now t: Dj ~ C is a closed immersion, hence is proper. Furthermore Dj does 

not contain any component C~ of Co. Also Dj is closed, so Dj does not contain 

C~. Consider the composite f = 7r o ~: Dj , Spec R. Since the fibers of ~r are 

of dimension 1, f - l ( x )  is finite for each x in SpecR. So f is quasi-finite. Since 

f is a composite of proper morphisms, f is proper. But a proper quasi-finite 

morphism is finite [10, p. 6] so Dj is finite over R. Since R is henselian, any 

connected component of Dj × R xo gives rise to a connected component of Dj. 

But Dj is integral, hence Dj XR Xo = t9o. So nB(C) = 0 for each n > 1. | 

LEMMA 4: Let C be an algebraic curve over k embedded with normal crossings on 

a surface S. I f  the irreducible components of C are C1 , . . . ,  C8, then H2(C, lZn) -~ 

lli~=l H2(Ci, #~). 

Proo~ Let D = C1 k I " "  I_[ c8 denote the disjoint union of the curves C1 , . . . ,  C~. 

There is an obvious finite projection 7r: D * C. Let aC  denote the singular 

locus of C and a D  = :r-l(aC) those points on D lying over aC. Since C has only 

nodal singularities, the map 7r: aD , aC is 2-to-1. Let P be an element of aC 

and consider the cohomology with supports in P, H2(C, #n). The strictly local 

r ing (-O h is henselian with algebraically closed residue field k. Let U denote C,P 

Spec O~,p and let ph denote the closed point of U. By excision [10, Cor. 1.28, 

p. 93] H2(C, #~) ~- H2h(U, Izn). The long exact sequence for ph C U is 

. . . .  HI(U, pn) , H I ( U _  ph,#n) . g2h(V,#n) 

(5) " H2(U, #n) . . . .  

The curve U consists of 2 nonsi~gular henselian curves U1, U2 crossing at the 

closed point ph. Each curve Ui is the prime spectrum of a henselian discrete 

valuation ring with residue field k. So Hi(U, #~) = 0 for i > 0 and 

HI(U _ ph,#n) = Hi(u1 _ ph,#,~) @ HI(U2 _ ph,#,~) ~ Z/n@ Z/n.  

So equation (5) and excision show that H~(C, #~) ~ (Z/n)  (2). If Q is an element 

of aD, then the argument above also shows that H~(D, I~n) ~ Z/n.  Since 
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aC decomposes into a finite number of points P,  it follows that  H~c(C, #n) 

decomposes into the direct sum I ]peoc  H~(C, Pn) and similarly for aD. The 

long exact sequences of cohomology with supports in aC and (rD combined with 

the maps induced by ~r yield the commutative diagram below. 

(6) 
H l ( C - a C ,  ltn) , H~c(C,#n  ) , HZ(C, pn) , H 2 ( C - a C ,  ttn) 

Because ~r: C - c~C ~-, D - aD, a and 6 are isomorphisms. The map 13 is 

an isomorphism by the above computations. Therefore 7 is an isomorphism. 

Because D is a disjoint union, the lemma follows, l 

COROLLARY 5: Let R, C and K be as in Theorem 3. The sequence 

0 . B(K)  a ~ H I ( K ( A ) , Q / Z )  r ~ # ( - 1 )  , 0 
A P 

is exact where the first summation is over all irreducible curves A C_ C, the 

second over all closed points P 6 C. 

Proof: Follows immediately from (1) and Theorem 3. | 

For any discrete valuation ring R with perfect residue field k and field of 

fractions K,  for each q _> 0 the natural map Hq(R, Gm) , Hq(k, Gm) is an 

isomorphism [7, III, p. 93]. For q = 2 this is the theorem of Azumaya. There is 

a split-exact sequence 

0 , Hq(k,G,~) , Hq(K, Gm) • Hq- l ( k ,  Gm) , 0  

for each q > 2 [7, III, p. 93 and p. 188]. In particular, for q = 2, it follows that  

the Brauer group of K decomposes into a direct sum of B(k) and H I ( k , Q / Z ) .  

The group Hi(k ,  Q/Z) parametrizes the unramified cyclic Galois extensions of 

K. Various other results along these same lines are derived in [3] and [11]. We 

arrive at similar results for the Brauer group of a curve over K. 

THEOREM 6: Let R be a strictly local ring which is the henselization of a local 

ring Op,x at a closed point p on a smooth curve X over k. Let ~r: C , Spec R be 

proper and smooth of relative dimension 1. Let ~1 be the generic point ofSpec R 
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and C n = C x n ~. Let xo be the closed point of SpecR and Co = C x n xo. 

Then the Brauer group B(Cn) is isomorphic to HI(Co, Q/Z).  Every Azumaya 

algebra over C, of exponent n is split by a cyclic Galois extension of degree n 

which descends to an unramified extension of C. 

Proof: Since SpecR = {Xo} U {~/} with {z0} closed and {r/} open, we have 

C = Co UC~ with Co closed and C, open. The long exact sequence of cohomology 

with supports in Co and coefficients in Gm is 

H°(C,  Gin) . H°(Cn,Gm) 

(7) H I ( c ,  Gm) . H I ( c a ,  G,~) 

H2(C, Gm) . H2(Cn,Gm) 

If t is a local parameter for R, then 

H°(Cn, Gin) 

H°(C, Gin) 

• H~o(C, Gm) • 

, H~ (C Gin) . 
0 

. H 3 ( C  G.~ )  . . . .  
0 

- (t) 

and t vanishes with order 1 along Co. Since Co is a principal divisor, Pic C 

Pic C n. Prom Kummer theory the diagram 

0 • H°(Cn,Gm)®Z/n  

(8) l 
0 , H°(C, G m ) ® Z / n  

commutes and has exact rows. 

, HI(C,,#n) . ~ P i c C  n . 0 

l l 
• HI(C,#~)  • ~ P i c C  • 0 

Since H°(Cn, G m ) ®  Z/n  -~ (t)/(t ~} and 

H°(C, Gm) ® Z / n  = 0, we see from (8) that HI(Cn,#,)  TM (t)/(t '~) x HI(C, pn) 

and by proper base change HI(c ,  #n) -~ HI(Co, Pn). From Theorem 3 we have 

Hq(C, G m ) =  0 for all q > 2. Prom (7) it follows that  Hq(Cn,Gm ) -~ 

Hq+l~.~ Gm) for all > 2. Since Spec R is a direct limit of &ale neighborhoods Co [~, q -  
U ~-~ X of the closed point p ~ X, the morphism lr: C , Spec R descends to 

a proper smooth morphism C' . U with a closed fiber C~ = C' x u P ---- Co. 

By cohomological purity (see [11]) H~(C' ,  Gin) ~ Hq-2(C0, Q/Z) for all q _> 3. 

Taking the limit over all such V ~-* X yields H~o (C, Gm) -- Hq-2(Co, Q/Z)  for all 

q _> 3. Therefore H2(Cn,Gm) -~ HI(Co, Q/Z), Ha(C, ,Gm)  --- H2(Co, Q/Z) ~- 

# and Hq(Cn,G,~ ) ~- I-Iq-~(Co, Q/Z) = 0 for all q >_ 4. The isomorphism 

~H2(Cn,G,~) ~ I-II(Co, Z/n) is the Gysin map [10, p. 244]. Given any A in 

H I ( c , Z / n )  there is a corresponding ;~o in HI(Co, Z/n). Let )% denote the im- 

age of A in the group HI(C~,Z/n) under the natural map. Let ,~ also denote 
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the corresponding cyclic Galois cover of C~ with group (a). Using the cyclic 

Galois cover A~ and the trivial factor set t we form a cyclic crossed product 

algebra A(A) = (A~/C~, a, t) which represents a class in ~B(C~). Consider the 

ramification divisor of A(A) on C. Along the divisor Co of C, the ramification of 

A(A) is the element A0 of the group H 1(C0, Z / n ) .  Therefore, the correspondence 

A ~-~ A(A) induces an isomorphism H I ( C , ~ / n )  TM nB(C~). Every Azumaya 

algebra over C~ whose Brauer class is annihilated by n is Brauer equivalent to a 

cyclic crossed product of the form (A~/Cv, a, t), hence is split by A~ for some A. 

| 
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